SPE-LC-MS 法检测杭州地区饮用水 水源及自来水中的双酚 A^*

常 红¹ 王秀丽² 高建峰² 张海峰¹ 胡建英^{1**} 董民强2 (1 北京大学环境学院,北京,100871;2 浙江省城市供水水质监测中心)

摘要采用固相萃取-液相色谱-质谱法(SPELC-MS)对杭州钱塘江流域及杭州地区自来 水厂水样中的双酚 A 进行检测. 在 10 个采样点均检测出双酚 A,浓度范围在 0.33 -25.09 ng 1⁻¹.

关键词 固相萃取-液相色谱-质谱,双酚 A,饮用水.

人类暴露双酚 A (BPA) 的主要途径之一是饮用水. 除此之外, 水源污染也是影响 饮用水 BPA 污染的一个主要途径. Fromme H 等对德国 116 个地表水样品中 BPA 的调查 显示, BPA 的浓度在 $0.5 - 410 \text{ng} \cdot 1^{-1[1]}$, 另外, 在饮用水消毒过程中产生的 BPA 消毒副 产物具有比 BPA 更强的内分泌干扰作用^[2]. 因此,水环境中的 BPA 对生态环境和人类 健康的潜在危害是不容忽视的.

采用 SPELC ESIMS 检测方法,对杭州地区饮用水水源及自来水厂出厂水中的 BPA 进行了调查.

1 样品的采集和分析

样品采集于杭州钱塘江流域,采样时间为 2002 年 4 月、7 月、10 月和 2003 年 4 月[3]. 样品采集后立即进行处理,对于不能立即处理的样品,加入1%福尔马林在4 冷藏.

取 2L 水样,用玻璃纤维滤纸过滤,过 Sep-pack C18 固相萃取柱(1g,6ml, Waters 公司). C18 柱的活化条件为 6ml 甲醇, 6ml 超纯水, 进样速度为 5 —10ml min 1: 洗脱 条件为 8ml 甲醇. 洗脱液在微弱氮气下吹干, 用甲醇定容至 1ml.

Waters 2690-Micromass ZMD 4000 液相色谱质谱取用仪.

色谱条件: 在 25min 内甲醇从 0 %凸型 (Waters 2690, curve 5) 变化到 100 %, 流速 0. 2ml min⁻¹. 柱温 30 . 进样量 20ul.

质谱条件: ESF模式,喷雾毛细管电压 2.5kV,锥孔电压 30V,去溶剂气流量 500 L h⁻¹, 去溶剂气温度 400 ,锥孔气流量 100L h⁻¹, 离子源温度 130 ^[3].

定性测定采用 SCAN 模式,扫描范围为 50 (m/z < 300amu,特征离子为 227, 212). 定量采用选择离子模式 (SIM),用外标法定量,选择的特征离子为 227.

²⁰⁰⁴年1月15日收稿.

^{*}国家杰出青年科学基金项目(49925103),环保"863"(2001AA64601025). * *通讯联系人.

2 水源水和饮用水的测定

取 $100 \text{mg } 1^{-1}$ BPA 的标准储备液,用甲醇稀释成 $0.2, 0.5, 1, 2, 5, 10, 20, 50, 100 \text{µg } 1^{-1}$ 的标准系列,进行 LC-MS 测定.得到了很好的线性相关性($r^2 = 0.9997$).

向 2L 水样(取自北京大学,背景值为 0)中添加适量的 BPA,使样品浓度为 5 ng 1^{-1} ,进行回收率实验,得到平均回收率 \pm 标准偏差为 94.3 ± 3.1 . 结果表明,样品前处理方法可以有效地回收水样中微量的 BPA. 考虑到浓缩倍数为 2000 倍和样品的回收率,BPA 在环境水样中的定量检测限(S/N=10)约为 0.1 ng 1^{-1} .

表 1 为 2002 年 4 月、7 月、10 月和 2003 年 4 月份钱塘江流域中 BPA 浓度随季节的变化结果. 在 2002 年 4 月和 2003 年 4 月的两次调查中,各采样点水样中都检测到了 BPA.

从表 1 可以看出,钱塘江流域各采样点 2003 年 4 月检出的 BPA 的浓度范围在 21.4 ± 3.7 ng·l⁻¹,各点的浓度水平非常接近; 2002 年 4 月的浓度范围为 6.0 ± 3.7 ng l⁻¹,各点的浓度水平也较类似,但是相对于 2003 年的调查结果低 3 倍左右. 祥符水厂的原水来自另一独立的水源,BPA 浓度远低于钱塘江中的浓度.

图 1 为 2003 年 4 月采自浦阳江水样的 ESFLC-MS 的 SCAN 色谱图. 从图 1 可以看出,同时检出分子离子峰 m/z 227 和碎片离子 m/z 212,表明水样中含有 BPA.

表 1 各采样点 BPA 的浓度(ng 1

Table 1 Concentrations of BPA residual in surface and drinking water in Hangzhou (ng 1⁻¹)

采样时间	空差江	浦阳江	九溪	钱塘江	南星桥	三堡	清泰水	清泰水	祥符水	祥符水
	富春江						厂原水	厂出水	厂原水	厂出水
2002年4月	6.63	2.38	6.4	7.51	7.41	9.48	2.24	2.24	1.01	0.33
2002年7月	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2002年10月	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2003年4月	21.88	25.09	23.21	18. 27	20.02	21. 17	19. 9	14.4	3.49	1.83

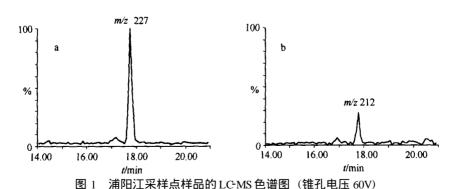


Fig. 1 SCAN LC ESI-MS chromatogram of BPA in water sample from Puyang river (April, 2003).

在 2002 年 4 月和 2003 年 4 月的调查中,在自来水厂的出水中均检测到了 BPA,其中清泰门自来水厂 BPA 的去除率较低,出水与源水中 BPA 的浓度接近,分别为 2.24 $ng \ 1^{-1}$ (2002 年) 和 14.4 $ng \ 1^{-1}$ (2003 年). 祥符水厂出水中 BPA 的去除率在 50 %左右,

虽然处理过程中大部分 BPA 被去除,但胡建英^[2]等对 BPA 在氯消毒过程中行为的研究表明,BPA 很容易和消毒剂反应生成一系列的消毒副产物,这些副产物相比 BPA 具有更强的内分泌干扰作用。因此,饮用水中 BPA 的去除和 BPA 消毒副产物的控制,应当引起我们足够的重视。另一方面,在 2002 年 7 月和 10 月的两次调查中,各采样点均未检测出 BPA. 这可能与水体中 BPA 的生物降解有关。BPA 在自然水体中很容易生物降解,Kang J H^[4]等的研究表明,BPA 在水体中的生物降解主要受微生物和温度影响,温度较高时微生物代谢旺盛,BPA 降解速度快。水温 20 左右时,在微生物生长旺盛的水体中 BPA 的半衰期约为 5d. 杭州地区 7 月和 10 月温度较高,水体中微生物生长旺盛,水体中 BPA 降解速度快,可能是 7 月、10 月两次调查中未检测到 BPA 的主要原因。

综上所述, LC ESFMS 法测定 BPA 具有较高的灵敏度,最低检测限为 0.1 ng ·1⁻¹. 在检测水体中,2002 年 4 月和 2003 年 4 月 BPA 浓度在 0.33 —25.09 ng ·1⁻¹之间. 2002 年 7 月和 10 月未检出 BPA,可能与 BPA 的生物降解有关.

参考文献

- [1] Fromme H, Kuchler T, Otto T et al. Occurrence of Phthalates and Birphanoi A and F in the Environment. Water Research. 2002, 36 (6) 1429-1438
- [2] Hu J Y, Aizawa T, Ookubo S, Products of Aqueous Chlorination of Bisphenol A and Their Estrogenic Activity. Evironmental Science & Technology, 2002, 36 (9) 1980—1987
- [3] 常红,胡建英,邵兵等. 固相萃取-LC-MS 法检测水中痕量雌激素. 环境化学, 2003, 22 (4) 400 -403
- [4] Kang J H, Kondo F, Effects of Bacterial Counts and Temperature on the Biodegradation of Bisphenol A in River Water. Chemosphere, 2002, 49 (5) 493—498

DETERMINATION OF BISPHENOL A IN SURFACE AND DRINKING WATER IN HANGZHOU BY SPE-LC-MS METHOD

ZHANG Hairfeng ¹ HU Jian ying ¹ CHANG Hong ¹ WANG Xiu li²
GAO Jian feng ² DONG Min qiang ²

(1 College of Environmental Sciences, Peking University, Beijing, 100871; 2 Hangzhou Municipal Water Works General Co.)

ABSTRACT

A sensitive SPELC-ESFMS method was established to analyze BPA in surface and drinking water. The recoveries for standard spiking surface and tap water were 94.3 ± 3.1 , the detection limit of the method was $0.1 \, \mathrm{ng} \cdot 1^{-1}$. BPA was found in both surface and drinking water from Hangzhou , and its concentration ranged from 0.33 to 25.09ng 1^{-1} . It should be noted while BPA was only detected in April both in 2002 and 2003 , no BPA was detected in July and October , 2003 , suggesting the temperature related biodegradation of BPA would be a factor for the residue of BPA in raw water.

Key words: SPE-LC-MS, BPA, drinking water.