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Abstract

In the temperate grasslands of northern China, there exists a large range of soil tex-

ture. However, previous studies have mainly focused on the effect of climate water

deficit on plant traits and have paid little attention to the effect of soil water deficit

because grasses tend to use rainfall water directly. We measured eight drought-

related plant traits of 12 widely distributed perennial species in the temperate grass-

land in northern China and examined drought-related plant traits under different arid-

ity index ([ET0 − P]/ET0) and soil sand/clay ratio. The 12 species were categorized

into three functional groups: fibrous-rooted C4 species, fibrous-rooted C3 species,

and tap-rooted C3 species. Our results showed that increasing climate drought had

influence on all selected functional groups, and the influence on aboveground bio-

mass and height was especially large on fibrous-rooted C3 species. Coarse soil led to

increased root length of fibrous-rooted C3 and tap-rooted C3 species. Our results

imply that root system can be important to plant responses under drought, and soil

texture can have influence on plant, though most of the traits show resistance to

coarser soil.
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1 | INTRODUCTION

Plant traits are widely used to show the adaptation of plants to envi-

ronmental change, especially plant functional traits and biomass (Liu &

Ma, 2015; Meng, Ni, & Wang, 2007; Díaz et al., 2004; Breitschwerdt,

Jandt, & Bruelheide, 2018; Violle et al., 2007). Many studies have

focused on plant traits and grassland ecosystems that are sensitive to

climate change especially under human disturbance (Jones, Barber, &

Gibson, 2019; Kröel-Dulay et al., 2015; Li et al., 2013; Schnoor,

Bruun, & Olsson, 2015). Several studies have shown that climate dry-

ness could decrease aboveground biomass and belowground biomass

in grassland ecosystems (Gao, Chen, Lin, Giese, & Brueck, 2011; Liu,

Liu, Gong, Wang, & Sun, 2014), as well as cause changes in plant mor-

phological and physiological traits, which usually help plants better

adapt to water stress (Wright et al., 2004). Plants under water stress

often have small and thick leaves with small special leaf areas and high

δ13C values (Ivanova et al., 2018; Lv, He, & Zhou, 2019), and tend to

allocate larger percentage of biomass to belowground (Schenk &

Jackson, 2002; Sitch et al., 2003). Previous studies also showed that

deep roots are often associated with water stress (Jackson et al., 1996).

Drought has different influences among functional groups (Sitch

et al., 2003), and these differences can reflect different drought adap-

tation abilities and drought-resistance strategies (Fort et al., 2017;

Liu & Ma, 2015; Zhou et al., 2018). C4 species have stronger photo-

synthetic capacity and higher water-use efficiency than C3 species

(Griffith et al., 2015; Way, Katul, Manzoni, & Vico, 2014), thus C4 spe-

cies are better adapted to drought, and tend to distribute under condi-

tions of high temperature, high light intensity and low concentration of

CO2 (Auerswald et al., 2009; Ni, 2003; Osborne & Freckleton, 2009;

Pyankov, Gunin, Tsoog, & Black, 2000; Taylor et al., 2014; Wang &
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Ma, 2016). Plant species with fibrous root systems have thin and long

roots, which help absorb unstable soil water in the surface soil layer; in

contrast, plant species with tap-root systems have a thick tap-root,

which helps to constantly absorb water from subsurface soil (Fry,

Evans, Sturrock, Bullock, & Bardgett, 2018; Ravenek et al., 2016). Con-

sidering the different water uptake strategies, the amount and distribu-

tion of precipitation may have different influences on fibrous-rooted

species and tap-rooted species (Didiano, Johnson, & Duval, 2016;

Padilla et al., 2013).

Another important factor influencing plant water uptake is soil

texture, the composition of soil particles of different sizes. Several

studies have highlighted the influence of soil texture on the vertical

distribution and dynamics of soil water (Bharali, 2019; Hou,

Wenninger, & Li, 2014). Fine particles in soil make soil more hydro-

philic, which decreases the soil infiltration rate (Hou et al., 2014;

Muñoz-Carpena, Lauvernet, & Carluer, 2018), while coarse particles in

soil would decrease the water content in surface soil (Bharali, 2019).

Based on the different water-holding abilities, the 'inverse texture

hypothesis' had suggested that coarse-textured soils in arid and semi-

arid regions could increase aboveground net primary production by

decreasing evaporation (Noy-Meir, 1973; Sala, Parton, Joyce, &

Lauenroth, 1988). However, some studies suggested communities

with coarse soil have decreased aboveground biomass (Li, Okin, &

Epstein, 2009; Wen et al., 2013), decreased root length (Schenk &

Jackson, 2002; Wen et al., 2013; Zuo et al., 2009), and decreased plant

height, vegetation coverage and species richness (Zuo et al., 2009).

Specific studies on the relationship between plant traits of different

functional groups and coarser soil 'remain limited'.

In this study, we selected the agro-pastural transitional zone with

mixed land uses of agriculture and animal husbandry in the temperate

steppe in northern China as our study area, a large range of different

soil texture exits in this region. We intended to answer the following

scientific questions: Does climate dryness has different influence on

functional groups with different root system? Does soil coarsening

has an influence on drought-related plant traits? If so, how has soil

coarsening changed the plant traits? Based on the previous studies,

we developed the following hypotheses: (1) climate dryness can lead

to increasing water stress on grassland plants and the influence is

larger on fibrous-rooted species than on taprooted species, larger on

C3 species than on C4 species; (2) coarser soil can also have a similar

influence on plants from different functional groups as climate

dryness.

2 | METHODS

2.1 | Study area

Our study area is located in the temperate grassland in northern

China (36�N–46�N, 105�E–125�E), including the south-eastern part

of the Inner Mongolian Plateau and surrounding areas (Figure 1). The

average annual temperature is approximately 0.7–9.1�C, and the

F IGURE 1 Location of the study zone with sample plots shown by black dots [Colour figure can be viewed at wileyonlinelibrary.com]
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annual precipitation is approximately 150–450 mm. Affected by the

East Asian monsoon, the mean annual precipitation decreases from

the southeast to northwest. Correspondingly, the soil type changes

from Chernozem soil to chestnut soil to brown calcic soil, and the veg-

etation type changes from meadow steppe to typical steppe and

desert steppe.

This region has become warmer and drier during the last 70 years,

and the Palmer drought severity index (PDSI) has been increasing, with a

trend that is larger than the world average (Dai, 2011; Dai, Trenberth, &

Qian, 2004). How local ecosystems change under warming and drying

climates has attracted attention (Han et al., 2018; Lv et al., 2019).

2.2 | Field sampling and laboratory measurements

We sampled 107 plots in the growing seasons (June–August) of 2012,

2017, and 2018 and collected species that are widely and frequently

found, including fibrous-rooted C4 species, fibrous-rooted C3 species,

and tap-rooted C3 species. A total of 12 species were selected (Table 1).

We selected mature and healthy leaves from the middle of plants,

scanned 5–10 leaves from different individuals with a scanner to calcu-

late leaf area, measured three overlapped leaves with a vernier caliper

to calculate leaf thickness, and took leaves from different individuals back

to laboratory to measure δ13C. We also gathered at least three plant sam-

ples with undamaged roots to measure root length (length of the longest

root for fibrous-rooted species, length of the taproot for -species) and

measured aboveground biomass, belowground biomass as well as total

biomass after cleaning with water and drying at 65�C for 48 hr. In addi-

tion, we collected three soil samples from a depth of 0–10 cm to conduct

laser particle size analysis. Soil particles were divided into three size

groups, namely, clay (< 2 μm), silt (2–63 μm), and sand (63–2,000 μm), and

the ratio of sand/clay were calculated. Most measurements were repeated

three times. The measurements were conducted at the Plant and Soil Lab-

oratory of Peking University.

We collected and calculated data of the aridity index from CGIAR

(https://cgiarcsi.community), which has a resolution of 1 × 1 km2 and

is averaged over 50 years. The aridity index was defined as (ET0 – P)/

ET0; where P is the mean annual precipitation and ET0 is the mean

annual reference evapotranspiration. The aridity index can represent

the long-term climate condition across the study area, and a larger

value of aridity index represents a drier climate.

We also calculated the human disturbance index (HDI) from plant

composition using the methods of Liu, Yin, Tian, Ren, and Wang (2008),

and divided sample plots equally into 5� of human disturbance based

on HDI.

All the response and driving variables are listed in Tables 2 and 3.

2.3 | Statistical analyses

We used the Kruskal-Wallis method to test the differences in root

lengths among functional groups, this method can be used even when

the sample size differs among functional groups. We used a linear

mixed model (LMM, with the R package lme4) with species as random

effect to examine how plant traits change with aridity index and soil

sand/clay ratio. For the thickness of fibrous-rooted C3 species and

Fabaceae species, the random effect is removed from models because

the models failed to converge, the random effect is also removed if

the variance of random effect is close to zero.

Soil sand/clay ratio is generally positively related to aridity index

(correlation coefficient = 0.287, p = 0.002), adding the interaction of

aridity index causes the problem of multicollinearity (variance inflation

factors > 10), so the interaction effect was removed from the models.

Aridity index, soil sand/clay ratios, and plant traits are all standardized

before putting into models to make results more comparable.

We used analysis of variance to show the relationship between

the degree of HDI and aridity index, and used linear mix model to

examine the influences of aridity index, human disturbance as well as

their interaction on soil sand/clay ratio.

TABLE 1 Selected 12 species and their functional groups

Family Functional group

Cleistogenes squarrosa Poaceae Fibrous-rooted C4

Leymus chinensis Poaceae Fibrous-rooted C3

Agropyron cristatum Poaceae Fibrous-rooted C3

Lespedeza davurica Fabaceae Tap-rooted C3

Medicago ruthenica Fabaceae Tap-rooted C3

Gueldenstaedtia verna Fabaceae Tap-rooted C3

Heteropappus altaicus Asteraceae Tap-rooted C3

Artemisia frigida Asteraceae Tap-rooted C3

Potentilla longifolia Rosaceae Tap-rooted C3

Potentilla bifurca var. major Rosaceae Tap-rooted C3

Thalictrum petaloideum Ranunculaceae Tap-rooted C3

Stellera chamaejasme Thymelaeaceae Tap-rooted C3

TABLE 2 Description of the driving variables

Unit Range Average S D

Annual temperature �C 0.33–9.03 3.90 2.40

Annual precipitation mm 183–469 318 69.88

Aridity index — 0.62–0.88 0.76 0.06

Soil sand/clay ratio — 0.70–34.20 9.00 6.83

Human disturbance index — 1.07–2.79 1.40 0.28

Abbreviation: SD = standard deviation.
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3 | RESULTS

3.1 | The differences in root lengths among
functional groups

Among the selected species, the root lengths of fibrous-rooted C4 spe-

cies were the shortest, and those of tap-rooted species varied greatly

(Table 4). Among the three functional groups, the root lengths of fibrous-

rooted C4 species were significantly shorter than those of fibrous-rooted

C3 species and taprooted C3 species (p < 0.01) (Figure 2).

3.2 | Changes in plant traits under different
climate conditions

With the increase in aridity index, fibrous-rooted C4 species has oppo-

site response compared with tap-rooted C3 species and fibrous-

rooted C3 species (Figure 3). The absolute values of the regression

coefficients between aridity index and total biomass, aboveground

biomass and height are larger for fibrous-rooted C3 species than tap-

rooted C3 species and fibrous-rooted C4 species, and larger for family

mainly composed of fibrous-rooted C3 species (Poaceae) than families

mainly composed of tap-rooted C3 species (Asteraceae, Fabaceae, and

Rosaceae) (Figure 4).

3.3 | Change in plant traits under different soil
coarseness

The relationships between plant leaf traits of the three functional

groups and the soil sand/clay ratio showed a few significant relation-

ships (Table 5). With the increase in the soil sand/clay ratio, fibrous-

rooted C3 species increased leaf thickness (p = 0.004), and fibrous-

rooted C3 species, and tap-rooted C3 species had increased root

length (p < 0.05).

4 | DISCUSSION

Our results are basically consistent with the first hypothesis: climate

drying causes plants to be subjected to drought stress, and the influ-

ences on several essential traits are larger for fibrous C3 species. For

the second hypothesis, C3 species shows increased root length with

soil coarsening.

Compared with tap-rooted C3 species and fibrous-rooted C4 spe-

cies, fibrous-rooted C3 species had greater changes in several plant

traits with climate drying, though their roots are not the shortest. It is

widely recognized that C3 species have lower water use efficiency

than C4 species (Ivanova et al., 2018; Way et al., 2014). Compared

with tap-rooted species that can efficiently absorb stable water supply

from deeper soil (Didiano et al., 2016; Nippert & Knapp, 2007a;

Nippert & Knapp, 2007b), fibrous-rooted species tend to absorb

unstable water in shallower soil and can utilize brief and shallow

pulses (Fry et al., 2018; Ravenek et al., 2016; Schwinning &

TABLE 3 Description of the response variables

Unit Responses under dryer condition

Leaf area mm2 Smaller leaf area (Liu & Ma, 2015)

Leaf thickness mm Larger leaf thickness (Ivanova

et al., 2018)

δ13C ‰ Larger δ13C (Niu et al., 2011; Rumman,

Atkin, Bloomfield, & Eamus, 2017)

Height Cm Smaller height (Ma et al., 2020)

Root length Cm Larger or smaller root length (Schenk

& Jackson, 2002; Zhou et al., 2018)

Belowground

biomass

g Smaller belowground biomass (Meng

et al., 2019)

Aboveground

biomass

g Smaller aboveground biomass (Liu

et al., 2014; Meng et al., 2019)

Total biomass g Smaller total biomass (Gao

et al., 2011)

TABLE 4 Root lengths of selected
species, mean ± SD

Species Functional group Root length (cm) Sample size

Cleistogenes squarrosa Fibrous-rooted C4 10.39 ± 4.35 70

Leymus chinensis Fibrous-rooted C3 13.25 ± 0.75 2

Agropyron cristatum Fibrous-rooted C3 14.36 ± 6.21 21

Lespedeza davurica Tap-rooted C3 25.53 ± 13.68 27

Medicago ruthenica Tap-rooted C3 19.69 ± 8.94 15

Gueldenstaedtia verna Tap-rooted C3 13.72 ± 4.05 9

Heteropappus altaicus Tap-rooted C3 13.28 ± 2.97 22

Artemisia frigida Tap-rooted C3 15.09 ± 6.23 15

Potentilla longifolia Tap-rooted C3 7.77 ± 4.12 16

Potentilla bifurca var. major Tap-rooted C3 10.64 ± 5.80 45

Thalictrum petaloideum Tap-rooted C3 14.25 ± 7.96 19

Stellera chamaejasme Tap-rooted C3 26.60 ± 8.0
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Sala, 2004; Yang, Bastow, Spence, & Wright, 2008), which may

account for the more sensitive response of fibrous-rooted C3 species

to drought. However, this does not necessarily lead to the transition

of fibrous-rooted C3 species to tap-rooted C3 and fibrous-rooted C4

species under water deficit (Li et al., 2015), for the turnover of com-

munity is more guided by competition rather than plant mortality, and

fibrous species are more competitive (Stampfli, Bloor, Fischer, &

Zeiter, 2017).

Our study is carried on in the arid and semiarid grassland, in this

region, studies have suggested different ideas about relationships

between plant biomass and soil texture. According to the inverse tex-

ture hypotheses, coarser soil should lead to larger aboveground bio-

mass for the decreased evaporation (Noy-Meir, 1973). However, a

few field studies show that communities with coarser soil have

reduced aboveground and belowground biomass (Li, Zhao, Zhao,

Zhang, & Chen, 2006; Zuo et al., 2009). In our research, biomassF IGURE 2 The distribution of root lengths of three functional groups

F IGURE 3 The slope of plant traits with aridity index of the three functional groups. (a) fibrous-rooted C4; (b) fibrous-rooted C3; and (c) tap-
rooted C3. **p < 0.01; *p < 0.05; �p < 0.1

F IGURE 4 The slope of plant traits with aridity index of C3 families. (a) Poaceae; (b) Asteraceae; (c) Fabaceae; and (d) Rosaceae. **p < 0.01;
*p < 0.05; �p < 0.1
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response to aridity index rather than soil texture, suggesting climate

condition is still the main restricting factor in this region (Kang

et al., 2013; Ma, Yang, He, Zeng, & Fang, 2008).

However, soil texture does have influence on plants. With

coarser soil, C3 plants showed longer root length. A previous study

showed that coarser soil still held lower water and nutrient condition

in water-limited grassland (Li, Okin, & Epstein, 2009; Singh,

Milchunas, & Lauenroth, 1998; Wen et al., 2013), and plants stretch

root system to absorb water and nutrient in deeper soil when soil is

coarse (Schenk & Jackson, 2002), the longer roots may benefit

absorbing water and nutrient from lower layer, and explain the high

resistance of other plant traits. Except for the traits mentioned, for-

mer studies have also revealed the influence of coarser soil on com-

munity composition (Lane, Coffin, & Lauenroth, 1998; Renne,

Bradford, Burke, & Lauenroth, 2019). With soil getting coarser,

shrubs as well as sand pioneer plants took the place of herbaceous

plants (Augustine et al., 2017; Harrison & Shackleton, 1999; Li

et al., 2015).

TABLE 5 Results of the linear mixed models testing the effects of soil clay/sand ratios on plant traits

Fibrous-rooted C4 Fibrous-rooted C3 Tap-rooted C3

Estimate Std. error p Estimate Std. error p Estimate Std. error p

Leaf traits

Leaf area

Intercept −0.582 0.015 0 .000 0.204 0.320 0.638 0.060 0.299 0.848

Sand/clay 0.001 0.004 0.863 0.009 0.023 0.687 0.079 0.043 0.064

Aridity index 0.025 0.015 0.099 −0.165 0.042 0.000 −0.195 0.054 0.000

Leaf thickness

Intercept −1.455 0.199 0 .000 0.517 0.114 0 .000 0.012 0.200 0.952

Sand/clay −0.028 0.047 0.560 0.114 0.037 0.004 0.004 0.039 0.914

Aridity index 0.279 0.194 0.161 −0.001 0.110 0.993 0.121 0.057 0.034

Leaf δ13C

Intercept 3.180 0.035 0 .000 −0.108 0.075 0.386 −0.239 0.092 0.031

Sand/clay −0.009 0.009 0.298 0.012 0.010 0.230 0.005 0.011 0.655

Aridity index −0.022 0.035 0.538 0.096 0.029 0.002 0.078 0.016 0.000

Plant size

Height

Intercept −0.490 0.263 0.073 0.782 0.126 0 .000 −0.105 0.150 0.502

Sand/clay 0.043 0.065 0.513 −0.030 0.062 0.636 −0.080 0.044 0.072

Aridity index −0.095 0.261 0.719 −0.620 0.118 0.000 −0.194 0.064 0.003

Root length

Intercept −0.436 0.057 0 .000 −0.144 0.257 0.715 0.205 0.247 0.431

Sand/clay 0.017 0.045 0.704 0.186 0.036 0.000 0.136 0.049 0.006

Aridity index 0.225 0.069 0.002 −0.281 0.112 0.021 −0.103 0.074 0.166

Biomass

Belowground biomass

Intercept −0.431 0.040 0 .000 0.681 0.553 0.235 0.035 0.129 0.795

Sand/clay −0.003 0.010 0.765 0.037 0.163 0.821 0.013 0.036 0.725

Aridity index 0.155 0.039 0.001 −0.045 0.599 0.941 −0.249 0.066 0.000

Aboveground biomass

Intercept −0.486 0.094 .000 0.318 0.482 0.630 0.016 0.094 0.872

Sand/clay 0.016 0.023 .492 −0.036 0.112 0.748 0.045 0.036 0.211

Aridity index 0.158 0.093 .101 −0.653 0.208 0.003 −0.163 0.055 0.005

Total biomass

Intercept −0.518 0.064 0 .000 1.195 0.524 0 .036 0.062 0.158 0.709

Sand/clay 0.005 0.016 0.771 −0.002 0.155 0.989 0.024 0.033 0.474

Aridity index 0.179 0.063 0.009 −0.977 0.568 0.103 −0.222 0.063 0.001

Note: Significance for bold values is p < 0.05.
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Still, our research could not separate soil coarsened by differ-

ent factors. Previous studies had revealed that both dryer climate

and human disturbance like grazing can lead to weakened vegeta-

tion cover (Li et al., 2013; Schönbach et al., 2011), thus a larger

wind erosion and soil coarsening (Li, Zhao, Liu, & Huang, 2009;

Zhou, Zhang, Zou, Zhang, & Zhang, 2020). In our results, aridity

index and the degree of human disturbance are not significantly

related (p = 0.163), and climate, human disturbance as well as

their interaction have influence on soil texture (Appendix), thus

have potential influence on plants. Finally, the temperate grass-

land in northern China is under strong human disturbance as well

as climate change, leading to soil coarsening (Christensen,

Coughenour, Ellis, & Zuo, 2004; Dai, 2011; Tong, Wu, Yong,

Yang, & Yong, 2004), and learning about the influence of soil tex-

ture can help predict grassland response and should be further

studied.

5 | CONCLUSIONS

We studied the influence of climate and soil texture on the plant traits

of grassland plants. Dryer climate leads to increased drought stress on

grassland plants, which had larger influence on several essential plant

traits of fibrous-rooted C3 species rather than tap-rooted C3 and

fibrous-rooted C4 species, also, the studied functional groups showed

longer root length with coarser soil. The results show that root system

can be important for grassland plants to cope with dry climate, which

is also influenced by soil texture.
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